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Given a small number of structure factors of a known chiral

structure of unknown hand, it is shown that the hand can be

determined from the sign of the contrast difference of two

reflections in a suitably oriented convergent-beam electron

diffraction (CBED) pattern. A simple formula for this

difference, which takes into account all the significant

second-order scattering, is derived using the series expansion

of Cowley and Moodie for n-beam diffraction. The reason for

the success of a three-beam interpretation is investigated. The

method is applied to patterns from thin crystals in which a

mirror projection symmetry can be found and its validity is

demonstrated by agreement with experiment using samples of

known hand. The advantages of recording patterns near major

zone axes are discussed as well as some other experimental

aspects of chiral determination using CBED.
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1. Introduction

It has been known for a few decades that the hand of chiral

structures can be determined from convergent-beam electron

diffraction (CBED) experiments (Goodman & Secomb, 1977;

Goodman & Johnson, 1977; Tanaka et al., 1985; Johnson &

Preston, 1994). This ability is due to multiple scattering within

the crystal leading to an exit wave on which the relative phases

(as well as the amplitudes) of the Fourier coefficients of the

crystal potential have a significant influence. Early determi-

nations used data from two patterns at differing orientations,

making for a more difficult experiment. A single pattern is

preferable but, if taken at an exact zone axis for example,

requires a full multislice calculation to determine hand.1 It is

attractive to use a pattern which can be interpreted using only

a few structure factors in a simple calculation, but such an aim

needs to be carefully validated before use.

The use of a thin crystal is an advantage since it simplifies

the calculation and allows the use of a projected ZOLZ (zero-

order Laue zone) mirror plane for orientating the crystal, the

influence of HOLZ (high-order Laue zone) reflections on the

ZOLZ symmetry being minimal for thin crystals. In this

respect the previous work on the enantiomorphisim using a

single CBED pattern of low quartz (Goodman & Johnson,

1977) was made more difficult by the use of a thick crystal. In

the case of low quartz, multiple scattering within the ZOLZ is

essential for the identification of mirror planes and hence the

indexing (Goodman & Secomb, 1977), and it will be seen later

that a modification of the analytical method to be described

may possibly be applied to such cases.

1 The comment by Johnson & Preston (1994) in referring to the chiral
character of a 111 axis pattern of Bi12GeO20 (mistakenly referred to as
Bi12GeO24) that hand cannot be determined from such patterns is incorrect.



The present paper is an extension of work on a simple

experimental method of hand determination from a single

CBED pattern reported by Johnson & Preston (1994). In that

paper, the interpretation was made using either full n-beam or

three-beam calculations. However, a full n-beam calculation is

tedious and a three-beam calculation over-emphasizes the

coupling between three beams, omitting the possible influence

on the result of other beams visible in the diffraction pattern.

Here, provided the crystal is sufficiently thin, the calculation is

greatly simplified by the use of a simple formula derived by

summing the first- and second-order scattering processes of

the series expansion for n-beam diffraction of Cowley and

Moodie (Cowley & Moodie, 1962; Moodie, 1972). Further, the

influence of other beams in the diffraction pattern is investi-

gated.

An important aspect of the method of Johnson & Preston

(1994) is that the crystal is orientated such that a twofold axis,

either rotor or screw, is perpendicular to the incident electron

beam. This situation results in a mirror line, or lines, of

intensity symmetry in the ZOLZ at a zone axis. The crystal is

then tilted, maintaining a mirror line of symmetry in the

ZOLZ until a pair of chirally sensitive reflections is observed

in the first-order Laue zone that break the mirror. Such

reflections are known in X-ray crystallography as equivalents

or Bijvoet pairs. It is important to realise that not all

such pairs are equally sensitive to the chiral nature

of the crystal when excited in a multiple beam

experiment. This experimental technique of rota-

tion of the crystal about an axis normal to the mirror

line automatically exposes those pairs of reflections

that are sensitive to hand. In addition, a tilted

pattern has the advantage of simplifying the

diffraction conditions, permitting the deduction of a

simple formula such as that derived in x4 of this

paper.

There is little in the literature on the selection of

zone axes suitable for chiral determination by

CBED. From a consideration of previous work on

the subject it is clear that the type of analysis and

the ease of the experiment depend on the choice of

zone axis. This arises because some projections

result in polar twofold axes and when these are

present, dynamic interaction within the ZOLZ may

reduce the observed projection symmetry from that

expected. Therefore, it is useful to consider the

projected symmetry and it is discussed in x2 of this

paper.

Some observations on the use of minor zone axes

and a paper on CBED chiral determination (Inui et

al., 2003) are made in x11.

2. Experimental

In recording a CBED pattern suitable for chiral

determination, the facility offered by the presence

of a ZOLZ mirror line in maintaining the correct

orientation whilst tilting should not be under-

estimated. In choosing a zone axis for a chiral determination,

both experimental and analytical factors should be consid-

ered. Experimentally, both the ease of recognizing the zone

symmetry and in subsequently tilting to the required orien-

tation are important, and analytically, the determination of a

unique index and the degree of computation required. These

issues become relevant when dealing with large unit-cell

structures.

Before proceeding with a brief description of the experi-

ment, some remarks on indexing should be made. The method

depends on the zone axis used. If the projection contains polar

axes, a dynamic calculation is required to distinguish the sense

of the axes and hence the correct index. This is possible in

CBED from a thin crystal as the internal ZOLZ interactions

are dynamic (Friedel’s Law does not hold). Projections with

plane-group symmetry pm, pg, p31m or p3m1 will have a polar

direction. When the projection has no polar axis, either the

measurement of the axial ratio or the calculation of structure

factors, in the case of a square lattice, will determine a unique

index.

To aid in understanding the above, it is useful to consider

the following examples. MnSi has the cubic space group 198,

P213. If the 001 zone is used, p2gg plane-group symmetry is

found, all ZOLZ structure factors are real and two mirror lines
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Table 1
Zone axes of patterns with projected mirror lines in their ZOLZ, polar axes and non-
polar directions for point groups which support enantiomorphisim.

All directions normal to an even-fold rotation axis are non-polar. The symmetry-equivalent
sets of directions are placed between semicolons in the fourth column. Hexagonal indices
are used for the rhombohedral groups.

Point group
Zone axes with a
mirror line or lines Polar (symmetry) axes Non-polar directions

432 h001i h110i h111i None [0uw] [u0w] [uv0];
[uuw] [uvv] [uvu];
[u�uw] [uv�v] [�uvu]

23 h001i h110i Four threefold [0uw] [u0w] [uv0]

622 h001i h100i h210i None [u2uw] [�2u�uw]
[u�uw] [uuw] [�u0w]
[0�vw]

6 None [001] [uv0]

3 None [001] None

312 h001i h100i [1�110] [120] [�22�110] [uuw] [�u0w] [0�vw]

321 h001i h210i [100] [010] [�11�110] [u2uw] [�22u�uw] [u�uw]

422 h001i h100i h110i None [uv0]; [0vw] [u0w];
[uuw] [u�uw]

4 None [001] [uv0]

222 h100i h010i h001i None [0uv]; [u0w]; [uv0]

2 h001i h100i
unique axis b

[010] [u0w]



will be seen. However, the 110 zone (symmetry p1g1) was

chosen by Tanaka et al. (1985) and the ZOLZ is consequently

asymmetric (polar) and a dynamic calculation was used to

determine its sense. Another example, Bi12GeO20
2 (Johnson &

Preston, 1994) with the cubic space group 197, I23, has a

projected symmetry of p2mm in the 001 zone. As the

diffraction pattern is square but the symmetry only 2mm,

calculation of the ZOLZ structure factors will be needed to

distinguish between the a* and b* axes before a unique index

can be established.3

The enantiomorphic point groups 3, 4 and 6 require special

consideration as they do not have mirror lines in any projec-

tion. The present treatment does not cover these groups which

present the experimental difficulties discussed in x9. When a

twofold axis is present a mirror will result. An example is low

quartz (trigonal, space group 152, P3121). When viewed down

001, the zero-order zone is polar with projection symmetry

p31m. Dynamic interactions within this zone result in a

diffraction pattern with threefold symmetry and this allows the

sense of the mirror line in relation to the structure to be

determined, as shown by Goodman & Secomb (1977). The

method of Goodman & Secomb could be adapted to thin

crystals, with smaller tilts than they used and applying

expression (6) in a modified form appropriate for a ZOLZ

having complex structure factors as discussed in x9.

To assist in setting up an experiment, the zone axes with

projected mirror lines for the point groups supporting enan-

tiomorphism are given in Table 1. In addition, the right-most

two columns are selected entries from Table 10.5.2 of the

International Tables for Crystallography (1992) for the iden-

tification of polar mirror lines and directions, and thus the

diffraction symmetry of the zero-order Laue zone under

conditions of multiple scattering when the crystal is thin.

2.1. Example

A CBED pattern from Ho2Ge2O7 at an orientation4

suitable for hand determination is shown in Fig. 1. This

orientation is near, but not at, a major zone axis, the latter

being easy to obtain and index. After recognizing a mirror

line, or lines, of projected symmetry in the ZOLZ, refinement

of the orientation was made by rotating the crystal away from

the zone axis about an axis perpendicular to the mirror line (in

this case a twofold screw axis was used) until a large intensity

difference was noted between equivalent reflections in the

first-order zone. The equivalent reflections in the FOLZ of Fig.

1 are those labelled L and R in Fig. 2, which is a simplified

diagrammatic representation of Fig. 1.

Indexing a diffraction pattern that shows two or more Laue

zones without ambiguity depends on the space group of the

crystal. As discussed earlier, the symmetry of the ‘special

projection’ must be considered and the sense of the mirror

line, if polar, taken account of. As the curvature of the Ewald

sphere is always towards the crystal, choosing a right-handed

reciprocal set of axes h, k and l with the l axis in the beam

direction results in the first-order zone index �1. This
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Figure 1
A typical orientation for hand determination. The mirror symmetry in the
ZOLZ is clearly seen, broken in the FOLZ. Aligned with the horizontal
direction of this figure is a screw axis causing odd-order extinctions in the
ZOLZ. The space group is P41212 or its enantiomorph and the pattern is
taken near the fourfold axis

Figure 2
Two possible one- and two-segment paths to the beam L.

2 The use of the term BGO is confusing since it is being applied to both
Bi12GeO20 and Bi4Ge3O12.
3 This point was not explained in the paper by Johnson & Preston (1994). 4 In this case the 001 zone which has p4gm ZOLZ symmetry.



indexing is consistent with the requirements in the note

published by Spence et al. (1994) on the minimum number of

beams (four) required to distinguish enantiomorphism.5

The crystal giving the pattern of Fig. 1 was used to record

further patterns at other rotations so that a more stringent test

of the formula derived later in this paper could be made. This

test is discussed in x7.

3. Background

It was shown previously (Johnson & Preston, 1994), by

comparison of experiment with a full n-beam calculation, that

a three-beam interpretation of the intensity difference

between a pair of equivalent reflections in the first-order Laue

zone could be sufficient to determine hand, provided the

crystal was thin and the experimental conditions were chosen

appropriately. In the examples given, Bi12GeO20 and

Ho2Ge2O7, the sign of the contrast difference showed no

tendency to reverse at thicknesses of 30 nm or more, inde-

pendent of the number of beams used in the dynamical

calculation. This result was repeated in the three-beam

calculation. However, as stated previously, a three-beam

analysis over-emphasizes the coupling between the beams and

omits the possible influence on the result of other beams

visible in the diffraction pattern. These factors led to a re-

examination of the diffraction situation using the series

expansion of the n-beam diffraction of Cowley and Moodie.

This showed that it is possible to derive an approximation,

other than the three-beam, which takes into account the

influence of more of the beams at the expense of limiting the

extent of the interaction. This approximation only includes the

coupling between the beams at or near zero excitation error

(those that are visible in the diffraction pattern) and gives a

simple formula to determine the hand. It is the main subject of

the present paper.

4. Theory

Our aim is to calculate the relative intensity of the equivalent

reflections, L and R in Fig. 2, using only the first- and second-

order interactions in the series expansion by Cowley and

Moodie of n-beam diffraction. In the expansion, the amplitude

U6 of the diffracted beam h is shown to be the sum of products

of two functions

UðhÞ ¼
X
n¼1

VnðhÞZnðhÞ; ð1Þ

where V is a function dependent on the Fourier coefficients of

the potential, Z is dependent only on the geometry of the

experiment and n is the order of interaction. It can be shown

for reflections close to the Ewald sphere that Z can be

approximated by 1/n! (Cowley & Moodie, 19627). In this

instance (1) is the thin-phase grating approximation expressed

in reciprocal space. Since our purpose here is simply to

determine which of two equivalent diffracted beams is of

greater intensity and the experiment is designed to maximize

the difference, this approximation is sufficient.

The function V is a product of n terms of the form i�HV(hj),

where � is the scattering coefficient, H is the thickness and

V(hj) is the hj Fourier coefficient of the potential for one unit

cell. The interpretation of this product can be understood

when it is viewed as a multiple scattering diagram, as

described by Gjønnes & Moodie (1965). This view represents

the total amplitude U(h) of a diffracted beam h as the sum

over all possible paths in the diffraction pattern, each segment

of a path, j, having the complex scattering probability of i�H

V(hj). For a thin crystal, owing to the small factor �H, paths of

one or two segments, n = 1 or 2, will dominate the sum, as the

influence of third- and higher-order terms may be neglected.

Of the sets of possible equivalent reflections that may be

excited in the first-order Laue zone, a pair with a large

difference in intensity is chosen experimentally. This pair is

labeled L and R and we now calculate their intensity differ-

ence. Contributions to the amplitude, Ul, of the beam L for

paths of one and two segments can be seen by inspection of

Fig. 2 where the one segment path is represented by the full

line vector and a typical two segment path is dotted. In the

following, the Fourier coefficients of interzone vectors are

represented using upper-case symbols and intrazone by lower-

case.

Following Cowley & Moodie, the amplitude of beam L is

UL ¼ i�HVL expði�LÞ þ
ði�HÞ

2

2!
2vcVR expði�RÞ

þ
ði�HÞ

2

2!

Xp

i¼1

voFL þ terms in ði�HÞ3=3! and

higher powers; ð2Þ

where VL, � L, VR and �R are the amplitudes and phases of

the equivalent reflections L and R, respectively, and vc is the

coupling term between them. The first term in (2) is the one

segment path, the next term is the sum of those two segment

paths which involve an equivalent reflection coupled by vc

(Fig. 3a) and the third term is the sum over the remaining p

two-segment paths involving a zero- or first-zone vector, vo,

and an inter-zone vector FL. A selection of these latter paths

are shown in Figs. 3(b)–(f).

Calculating the intensity of the beam L from (2) yields, after

some simplification, neglecting terms of order (i � H)3/3! and

higher, and replacing VR by VL

IL ¼V2
L þ 2�HvcV2

L sinð�L ��RÞ �
i�H

2!

X
fv�LVLF�L

� vLV�LFLg; ð3Þ
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5 In the paper by Johnson & Preston (1994) there is a note added in the proof
in which an apparent contradiction was mentioned. The contradiction, simply
resolved, was that, although four non-coplanar beams are required for
indexing, subsequently only three beams are required for hand determination.
Provided polar effects are considered, an electron diffraction pattern showing
two or more zones can always be uniquely indexed due to the fact that the
Ewald sphere curves toward the crystal.
6 Bold case is used for functions and vectors.

7 The factor 2� in this original derivation drops out of Z with a symmetric
definition of the Fourier transform.



where a common multiplier �H in (2) has been omitted.

The right hand term of (3)

�i�H

2!

Xp

i

fv�LVLF�L � vLV�LFLg ð4Þ

contains the significant two-term processes, each labelled i and

p in number, which end on L but do not involve the coupling

term vc. The intra- and inter-zone coefficients are vL and FL,

respectively.

After simplifying (4) and noting that vi,L is real8 when a

mirror line exists in the ZOLZ, (3) can be written

IL ¼V2
þ 2�HvcV2 sinð�L ��RÞ

þ �HV
Xp

i

jvi;LjjFi;Lj sinð�L � �i;LÞ; ð5Þ

where �i,L is the phase angle of the product vi,L Fi,L and the

suffix on V is no longer necessary as the amplitudes of VL and

VR are equal.

The intensity of beam R, found by interchanging the

subscripts L and R in (5), is subtracted from (5) to give

�IL�R ¼ 4�HvcV2 sinð�L ��RÞ

þ �HV
Xp

i

jvi;LjjFi;Lj sinð�L � �i;LÞ�

�HV
Xp

j

jvj;RjjFj;Rj sinð�R � �j;RÞ; ð6Þ

where the introduction of subscript j denotes that the two

summations are independent.

We may simplify (6) by introducing the phase and ampli-

tude relationships between the left and right equivalent

structure factors that result from using the ZOLZ mirror line

for experimental alignment. For the present consider just the

relationships for space groups P2 and P21 to cover those point

groups with a projected mirror symmetry that support enan-

tiomorphism.9 With the pattern indexed as shown in Fig. 4, the

relationships of use, taken from International Tables for X-ray

Crystallography (1952), are jFðhklÞj ¼ jFðh �kklÞj, �ðhklÞ =

� �ðh �kklÞ for P2 and for P21 when k is even and, additionally

for P21, when k is odd, jFðhklÞj ¼ jFðh �kklÞj, �ðhklÞ =

�� �ðh �kklÞ.

For simplicity, consider P2. In this case �L = ��R, v is real

due to the mirror line, and �i,L =��i,R. In applying these to the

simplification of (6), it is helpful to use the scattering diagrams

depicted for a limited diffraction pattern in Fig. 4. Two

segment paths can be chosen, reflected across the ZOLZ

mirror line, to pair left and right terms that are equivalent. The

possible paths are depicted in Fig. 3 for only the beam L. The

paths to the beam R are those for L mirrored across the

dashed line. Hence, the paths shown in Fig. 3(a) together with

those in the mirror of Fig. 3(a) (those to R) are all contained in

the first term of (6). The remaining diagrams in Fig. 3 are the

paths contained in the second term of (6) with the mirror of

these in the third term of (6). For Figs. 3(b) and (c) both the

amplitudes and phases of vL and FL are equal to vR and FR,

respectively, hence when choosing appropriate terms from the

summations in (6), they are cancelled.

For Figs. 3(d), (e) and (f) both the amplitude and phase of

vi,L is equal to vj,R and Fj,R is the conjugate of Fi,L. Hence we

may write (6) as

�IL�R ¼ 4�HvcV2 sinð2�LÞ

þ 2�HV
X<p

i

jvi;LjjFi;Lj sinð�L � �i;LÞ

( )
; ð7Þ

where the summation is now only over the paths (d), (e) and

(f) in Fig. 3, as indicated by the < symbol in the upper limit. By

making use of the fact that V is approximately jFi;Lj and the
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Figure 3
Scattering diagrams for two term paths to beam L in a typical pattern. The
dashed line is the ZOLZ mirror line.

Figure 4
The definition of indexing for P2 and P21.

8 The case of vi,L complex is discussed later in this paper.
9 Trigonal point groups are best treated separately, the mirror line being polar,
as described elsewhere in this paper.



mean intensity of L and R is (�HV)2, (7) may be recast in

terms of contrast as

CL�R ’ 2�H 2vc sinð�L ��RÞ þ
X<p

i

jvi;Lj sinð�L � �i;LÞ

" #
:

ð8Þ

Knowing the phases and amplitudes of the Fourier coeffi-

cients in the diffraction pattern from a structure factor

calculation, (8) can be readily evaluated and the hand deter-

mined.

5. Extension to 21

No terms for k odd can exist in the scattering diagrams in Fig.

3. There is hence no coupling with relative phases of

�ðhklÞ ¼ �� �ðh �kklÞ and the foregoing analysis for P2 is

sufficient. When paths in the ZOLZ with h non-zero are

considered a different circumstance exists for a glide mirror

line. This is discussed later.

6. Discussion

It is found that the sign of the intensity difference calculated

using only the first term of (7) gives the same hand as both the

three beam and full multislice calculations for the examples

given in the earlier work of Johnson & Preston (1994). These

are for tilted patterns, such as Fig. 1, some showing many more

ZOLZ reflections than that considered in Fig. 3. From this

result, it appears that paths via these additional ZOLZ beams,

those contained in the remaining terms in the summation of

(7), have little magnitude relative to the first term and have

only a small influence for the type of orientation considered.

To avoid a false determination it is important to understand

the conditions under which this occurs.

A minimum in the summation of (7) clearly depends on the

values of phase angles �i,L relative to �L, as well as the

amplitudes and phases of vi,L. However, these parameters are

structure dependent and at least the phase angles should be

calculated for the case being considered.

There are further aspects of the above approximation that

are of interest. One is to extend our consideration to ZOLZ

reflections of the form hk0, another is to consider covering

point groups 321 and 312, and a third is to derive the above

theory in a form suitable for zone-axis patterns such as those

promoted by Inui et al. (2003).

6.1. Extension to ZOLZ reflections when h is non-zero

When Fig. 3 is extended to include ZOLZ reflections for h

non-zero, it is readily shown that for vhk0 real, all the paths to L

and R via the ZOLZ reflections, shown as open circles in Fig.

5, are either accounted for by the first term in (6) or cancel

between the summation terms in (6). The grey circles repre-

sent the remaining beams whose influence requires assessing.

It is convenient to return to the form of the summation term

given in (4) rather than that of (6). For brevity, it is assumed

that that the coupling term is 020.

We then have

�i�H

2!

�Xp

i

ifv
�
LVLF�L � vLV�LFLg

�
Xp

j

jfv
�
RVRF�R � vRV�RFRg

�
: ð9Þ

Picking out only the term i in this expression for the path

shown in Fig. 6 to L and the equivalent term, j, for the path to

R, and using, for simplicity, v = vL = vR (equal to a real

number), as well as using the Bijvoet relations between VL and

VR and between FL and FR, we can write for these two terms,

ð�i�H=2!Þ2v½fVLF�L � V�LFLg�. Then (9) simplifies to

�Hv½=fVLFLg�, where = indicates the imaginary part.

Substituting

VL ¼
X
atom

fatom½Aatom;V þ iBatom;V � and

FL ¼
X
atom

fatom½Aatom;F þ iBatom;F �

for =fVLFLg gives for each atom; �Hv½fBvAF � AvBFg�:

ð10Þ

Considering further simplification, it is easier to deal with

the structure-factor expression for the space group P222, in

which all hk0 structure factors are real and, besides being
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Figure 5
Typical ZOLZ reflections involved in two term paths to beams L and R.
See the text for an explanation of the shading.

Figure 6
A typical path to L considered in P222 to estimate the magnitude of the
summation term of equation (7).



mirrored across the line h = 0, are also across k = 0. The

general structure-factor expressions in this group are

jFðhklÞj ¼ jFðh �kklÞj;

and

�ðhklÞ ¼ �ðh �kklÞ;

where we can permute h, k and l and the structure factor

components for each atom are

A ¼ 4 cosð2�hxÞ cosð2�kyÞ cosð2�lzÞ

and

B ¼ �4 sinð2�hxÞ sinð2�kyÞ sinð2�lzÞ:

To make the result more independent

of structure, the scattering from each

atom is considered rather than the

structure factor. We have Fatom = fatom

[A + iB], where fatom is the atomic

scattering factor and now V and F refer

to an atom. For convenience, the

expressions for A and B are shortened

to ccc and �sss and note that both V

and F have approximately the same

scattering vector as well as the terms hx,

ky and lz. Then (10) becomes

�Hv½�sss:cccþ ccc:sss�

which is approximately zero when

averaging over all the atoms in the unit

cell is taken account of.

From this it can be seen that the collective effect of the

remaining paths, via the ZOLZ (grey circles in Fig. 5), on the

intensity difference is small, allowing the first term of (7) to

dominate.

If the plane-group symmetry of the ZOLZ is p4gm, as in the

example below using Ho2Ge2O7, the hk0 reflections mirror

across the line k = 0 when hþ k is even, but are opposite when

hþ k is odd. Hence, (7) is valid for all paths when h = 0, but

not necessarily otherwise.

7. Results

7.1. Ho2Ge2O7

Data taken from a series of different tilts are shown in Table

2. Calculations of structure factors were made for both

enantiomorphic space groups P41212 and P43212 using the Xtal

crystallographic program10 and data from Smolin (1970). The

values of vc sin(�L � �R) from (8) are shown along with the

relevant structure factors. For vc, values of �0.76 and �4.6 V

were used for the 020 and 040 structure factors, respectively.

Apart from the case of the 11 � 1 �1 and 11 1 �1 pair, the

agreement between the calculated and experimental rows in

each section of Table 2 is good for P41212, but poor for P43212.

All experimental data has been included so patterns that show

little contrast are also shown. These would not be expected to

give a definitive result in determining hand.

The 11 �1 � 1 and 11 1 �1 pair give an opposing result to

the remainder of the data. The pattern is reproduced in Fig. 7.

It is clear that the ZOLZ intensities are much greater than

those of the HOLZ. Further, the strength of the coupling term

020, used to determine the hand, is much less than that of 040

clearly seen in the ZOLZ and in agreement with the calculated

values (�4.6 and �0.8 V, respectively) of these structure

factors. Thus, paths via the 0 4 0 + 11 �5 �1 and 0 �4 0 + 11 3

�1 are considerably stronger than the 0 2 0 + 11 �1 �1 and

0�2 0 + 11 1 �1 pairs, assumed to be dominant in the deri-

vation of expression (8) used to determine the hand. Also,

there are many h non-zero paths in the ZOLZ where, due to
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Table 2
Comparison of experimental observations with calculation of the first term of (8) for P41212 and
P43212.

hkl for the FOLZ pair
7 �2 �1

7 2 �1
9 �2 �1

9 2 �1
10 �2 �1

10 2 �1
11 �1 �1

11 1 �1
11 �2 �1

11 2 �1

17 �2 �1
17 2 �1

zone axis

(a) P41212
|V| and phase for 1.0, 3110 0.57, 1050 0.34, 420 0.32, 470 0.3, 1270 0.18, 1210

P41212 1390 3450 2280 2230 3230 3290

vc sin(�L � �R) �0.6 �4.0 �0.4 0.05 �1.2 �2.2
�L–R experiment � ��� � ++ � ��

(b) P43212
|V| and phase for 0.6, 460 0.73, 440 0.34, 3420 0.37, 820 0.18, 1930 0.05, 760

P43212 2240 2660 1080 80 770 1940

vc sin(�L � �R) 0.16 �3.1 3.7 0.73 �4.1 4.0
�L�R experiment � ��� � ++ � ��

Figure 7
The pattern headed ‘11 �1 �1, 11 1 �1’ in Table 2. Comparison of the
FOLZ pair 11 �1 �1/11 1 �1 gives an answer for the hand opposite that
found for the other experimental data. See text for details. 10 Version 3.7 available via http://xtal.sourceforge.net.



the glide mirrors resulting from the projection of two 21 screw

axes (plane-group symmetry p4gm in this example), the

phases across the mirror line are opposite. An example of the

latter is the pair 1 2 0 and 1 �2 0 with strong structure factors

2.8 and �2.8 V, respectively. It is clear that the relative

strengths of coupling terms must be considered when selecting

beams for comparison and that patterns with the above

characteristics should be avoided when applying the expres-

sion (8).

7.2. Bi12GeO20

Expression (8) was applied to the example of levorotatory

Bi12GeO20 used in Johnson & Preston (1994). Using the data

of Svensson et al. (1979) for the laevorotatory enantiomorph

gave the following calculated structure factors in Volts and

degrees. vc (0 4 0) = 1.9, VL (25 �2 �1) = 0.17, 336, VR

(252 �1) = 0.17, 24. These give a value of �1.4 for vc sin(�L �

�R), in agreement with the experimental observation that IR is

greater than IL.

8. Two-path cancellation

It is tempting to try the addition of related paths to see if a

more stringent approach to cancellation can be obtained.

Choosing two paths in the scattering diagram of Fig. 8 that

are symmetrically disposed about the k axis, the indices for F

of path 1 (dotted line) when those for V are (h �1 �1) and (h

� 1, �2k, �1) and for F of path 2 (full line) are (h + 1, �2k,

�1). Combining the terms in (9) for both these paths yields,

after substituting the cos and sin terms used above for A and B

and some trigonometric manipulation, the influence of each

atom at x y z in (9) to be

16 cosð2�xÞ sinð2�hxÞ cosð2�hxÞfcosð2�kyÞ cosð2�lzÞ

� sinð2�kyÞ sinð2�lzÞg:

It is not clear to the author how this expression leads to any

conclusion about cancellation that is superior to that already

advanced.

The above expression is for P222 with plane group

symmetry p2mm. Extension to more complex ZOLZ

symmetries is made by invoking the general relationships

between structure factors for the plane groups when making

substitutions into (8). These relationships are given in Table

1.4.3.A of the International Tables for Crystallography (1993).

9. Application to trigonal point groups

The case when no mirror lines are present, point group 3,

presents the serious experimental difficulty of alignment for

small tilts. Experimental tests at a threefold axis (Bi12GeO20

h111i (see Johnson & Preston, 1994) showed the only clearly

recognizable alignment was the exact zone-axis pattern. The

hand is then best determined by comparison of the ZOLZ

pattern to that of a multislice calculation.11 This situation also

applies in the case of point groups 4 and 6.

For the remaining two threefold point groups, 321 and 312,

(6) does not apply, as the equality of the amplitudes of the pair

of FOLZ reflections which break the ZOLZ mirror line, used

in its derivation, is no longer true. The equation could be used

if the experimental difficulty of accurately tilting at right

angles to one of the three polar twofold axes can be

surmounted and the phase of the ZOLZ coupling term, vc,

which is now complex, could be taken into account. In this

instance the modification to (6) is to the argument of the sin

term, which is now ð�L ��R þ !cÞ, where !c is the phase

angle of vc defined in the direction L to R.

In dealing with the threefold point groups it is wise to

recognize that confusion can easily arise when defining axes

and settings. The paper by Donnay & Le Page (1978)

summarizes the situation for the low quartz structure where

literature comparisons are complicated by a multitude of

approaches.

Two further, more general recommendations are worth

stating. Great care must clearly be taken in definitions at all

steps in the process of interpreting the CBED pattern. The

paper by Saxton et al. (1983) on sign conventions in electron

diffraction and imaging is useful here. In addition, a physical

property, such as optical rotation, should be associated with

the crystal used in a chiral-determining experiment. Without

this additional step there is no way other investigations may

check the result. Making this association was suggested by

Glazer & Stadnicka (1989) in their paper on structure–prop-

erty relationships and terminology in the non-centrosym-

metric crystal classes.

10. Application to zone-axis patterns

When the Cowley & Moodie expansion is applied to a zone-

axis pattern, it is possible to derive a general expression

similar to that found above for the tilted case. However, it is

more complex, especially in the case of a minor zone, where

the close neighbourhood of the FOLZ requires the inclusion
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Figure 8
Definition of two paths to L symmetrically disposed about the k axis.

11 It would be prudent to test the software used against experimental results
taken from a crystal of known hand before accepting a result.



of inter-zone paths. The complexity is due to the presence of

many beams of similar weight making the resulting expres-

sions unwieldy.

11. Conclusion

It is apparent that patterns taken for the purpose of hand

determination, when recorded at tilts of a few or more degrees

away from a major zone axis, are more readily analyzed than

the zone-axis patterns. Further, the experiment is facilitated

since the major zone axes are more easily recognized and

indexed than the minor zone axes, and alignment is particu-

larly straightforward when a ZOLZ mirror line is present.

These factors are especially important when dealing with large

unit cells. A further advantage of the tilted experiment is that

the tilt may be varied to detect various pairs of sensitive

reflections and the measurement easily repeated. This again is

of particular advantage when dealing with a complicated

structure.

Subsequent to the paper of Johnson & Preston (1994),

where a single pattern is used for the identification of hand,

Inui et al. (2003) published a paper on the determination of

chirality by CBED, again with single patterns but using those

taken at a minor zone axis. They included a useful table of

indices of equivalent reflections and the appropriate zone axes

for their observation. They emphasize the use of Bijvoet pairs,

which are any two symmetry equivalents which differ only by

phase and have been referred to in this paper as equivalent

pairs. The difference between the experimental technique

used by Johnson & Preston and that of Inui et al. is that the

former use a ZOLZ intensity mirror to enable orientation and

the latter use a geometric mirror line that bisects Bijvoet pairs.

These geometric lines are symmetry lines m � m0 in their

paper. They would be mirror lines of intensity under condi-

tions of pure kinematic scattering. Thus they are not the

projected mirror lines of symmetry referred to in this paper.

The lack of intensity symmetry makes the correct orientation

difficult to recognize.

There are some aspects of the paper by Inui et al. (2003),

which require comment. It is claimed that ‘chiral identification

can be made easily by inspecting the asymmetric intensity

distribution of the Bijvoet pairs of reflections . . . ’. Amplitude–

phase diagrams are then used to determine the relative

intensities between specific equivalent reflections (Bijvoet

pairs), and thus the hand. It is not clear how their amplitude–

phase diagrams take account of the many paths of comparable

weight to a reflection via other beams in the pattern. Only

amplitude–phase diagrams for two of many possible two-

vector paths are shown. It is readily seen from the Cowley and

Moodie series expansion that such an approach may lead to

false conclusions as it does not give appropriate weights to

first- and second-order scattering paths and, importantly,

omits consideration of the many other contributions to the

amplitude of a reflection via other paths. This latter omission is

particularly important for the case of a minor zone-axis

orientation, where there are a variety of multiple scattering

paths of similar influence. In the case of a large unit-cell

structure, at a minor zone axis there will be an even closer

coupling between zones and many beams present. It is

essential to understand their effect.

All the examples given by Inui et al. (2003) are taken at

minor zone axes. This increases the proximity of the FOLZ to

the ZOLZ and hence the coupling between them. This

coupling should be taken into account, even though the

interpretation requires only a comparison of the intensity

distribution in one Laue zone to distinguish the hand.12 At

least a second-order coupling between the zones is required in

any type of calculation to make this comparison correctly.

Although not specifically stated, their calculated patterns must

be of multiple beam type to accomplish this. Comparison of

these with experiment will determine the hand, as shown for

Te for example. Phase–amplitude diagrams are then unne-

cessary. The apparent lack of second-order coupling between

zones in their phase–amplitude approach is confusing. As

demonstrated in the present paper, it is important to consider

the relative weights of all the various multiple scattering paths

to a reflection in determining its intensity.

The fewer multiple scattering paths present in tilted

patterns, when compared with those in a zone-axis pattern,

simplify the application of the Cowley and Moodie series

expansion and lead to simple formulae which require the

knowledge of only a few structure factors and their phases to

determine the enantiomorph from the sign of the intensity

difference between a pair of equivalent reflections. However,

it is clear from the formulae obtained that care should be

taken so all paths of significant weight to these reflections are

considered. It has been shown that an approximate cancella-

tion of those two segment paths that do not involve the

coupling vector between the equivalent reflections occurs in

the case of tilted patterns when a mirror line is present in the

zero Laue zone. In the case of zone-axis patterns, many paths

of similar weight would need to be considered before a simple

solution to the problem can be obtained.

It is a pleasure to acknowledge the helpful comments and

suggestions made by Professor A. F. Moodie, Dr P. N. H.

Nakashima and Dr M. Saunders. In particular thanks is due to

Mr D. M. Jones for his interest and for many useful discus-

sions.
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